SOLUTION

Que:71

Given that DE and FG are both parallel to B.
$\Rightarrow \mathrm{DE}$ is parallel to FG .
$\therefore \triangle A D E \sim \triangle A G F$
Since the area of $\triangle \mathrm{ADE}$ is equal to the area of the quadrilateral DEGF, the area of $\Delta \mathrm{AFG}$ is twice the area of the $\triangle \mathrm{ADE}$.

$$
\begin{aligned}
& \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle A F G}=\left(\frac{A D}{A F}\right)^{2}=\left(\frac{A E}{A G}\right)^{2}=\left(\frac{D E}{F G}\right)^{2} \\
& \therefore\left(\frac{D E}{F G}\right)^{2}=\frac{1}{2} \\
& \Rightarrow \frac{D E}{F G}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Que:72

Given equation $31 \mathrm{x}+13 \mathrm{y}=75$.
(A) $(2,1)$ satisfies the given equation $31(2)+13(1)=75$.

Any pair (x, y) satisfying the equation can be expressed in the form $(2-13 \mathrm{~K}, 31 \mathrm{~K}+1)$ where k is an integer.
\therefore When $\mathrm{K}=1(2-13(1), 31+1)=(-11,32)$
When $\mathrm{K}=2(2-13(2), 31+2)=(-24,63)$
$\mathrm{K}=3(2-13(3), 31+3)=(-37,94)$
\therefore Option (D) does not satisfy the given equation.

Que:73

It is sufficient to compare the ratio $\frac{20.7}{32.8}$ (i.e., mango) with the ratio $\frac{27.4}{6.9}, \frac{19.4}{11.8}, \frac{5.8}{14.3}, \frac{4.6}{6.1}, \frac{18.7}{24.7}$ and $\frac{3.4}{3.4}$
By observation, only $\frac{5.8}{14.3}$ (i.e., Apples) is less than $\frac{20.7}{32.8}$. Hence only one variety of fruit.

Que:74

Export price per tonne for walnuts is proportional $\frac{27.4}{6.9}$ which is the highest ratio.
Statement A is true as Walnuts has the highest ratio of value to quality.

Statement B is true as $\frac{20.7}{32.8}<\frac{18.7}{24.7}$.
Statement C is true as $\frac{3.4 \% \text { of } x}{3.4 \% \text { of } y}=\frac{x}{y}$.
Statement D is true as $\frac{19.4 \%}{11.8 \%}<2\left(\frac{3.4}{3.4}\right)$.

Que:75

Let the total production of all the fresh fruits be 100 .
\Rightarrow Exports of fresh fruits $=30$
From the $1^{\text {st }}$ pie-chart, exports of mango $=32.8 \%$ of exports of all fresh fruits $=32.8 \%$ of 30 which is 20% of the production of mangoes.
$\therefore 32.8 \%$ of $30=20 \% \mathrm{P}_{\mathrm{M}}=>\mathrm{P}_{\mathrm{M}}=\frac{32.8 * 30}{20}=49.2$
Out of the total production of 100 , share of mangoes $=49.2$ or 49.2%.

Que:76

If the money is equal in dollars terms, then it will be so even in rupee terms. A Robert got $24+8$ $=32$ rupees and now all of three have equal amount.

Total amount $=32 * 3=96$ rupees
Total amount $=(12 \mathrm{D}+5 \mathrm{E})+(8 \mathrm{D}+4 \mathrm{E})=20 \mathrm{D}+9 \mathrm{E}$

$\therefore 20 \mathrm{D}+9 \mathrm{E}=96$

Also after giving 8 rupees to Robert, Nelson is left with 32 rupees.
$\Rightarrow 8 \mathrm{D}+4 \mathrm{E}-8=32$
$\Rightarrow 2 \mathrm{D}+\mathrm{E}=10 \rightarrow(2)$
(2) * 10 - (1) gives $\mathrm{E}=4$.

Que:77

Let Nelcy and Mike together can complete the work in n days.
\Rightarrow Nelcy takes $(\mathrm{n}+12)$ days
\Rightarrow Mike takes $(\mathrm{n}+27)$ days
$\therefore \frac{1}{(n+12)}+\frac{1}{(n+27)}=\frac{1}{n}$
$\Rightarrow \mathrm{n}[(\mathrm{n}+12)+(\mathrm{n}+27)]=(\mathrm{n}+12)(\mathrm{n}+27)$
$\Rightarrow 2 \mathrm{n}^{2}+39 \mathrm{n}=\mathrm{n}^{2}+39 \mathrm{n}+(27)(12)$
$\Rightarrow \mathrm{n}^{2}=(27)(12)=324$
$\Rightarrow \mathrm{n}=18$

But Nelcy and Mike worked for only 15 days.
\Rightarrow They completed $\frac{15}{18}=\frac{5}{6}$ th of the work.
\Rightarrow James completed $\frac{1}{6}$ th of the work.
\therefore James share $=\frac{1}{6}(3000)=$ Rs. 500

Que:78

Observe that $(-1)^{2 i}=1$, for all values of i. Hence $\mathrm{OP}_{1}=\mathrm{OP}_{2}=\mathrm{OP}_{3} \ldots=\mathrm{OP}_{\mathrm{n}}=1$ unit.
Consider the section of polygon as shown.

	As we choose large value of ' n ' we make the figure close to a circle of radius 1 unit. Hence for large values of ' n ', the area of
pue:79	

$2 x+5$ is an increasing function and $14-x$ is a decreasing function.
$\operatorname{Min}[\max (2 x+5,14-x)]$ occurs when the increasing and decreasing functions become equal.

$$
\begin{gathered}
\therefore 2 x+5=14-x \\
\Rightarrow 3 x=9 \\
\Rightarrow X=3
\end{gathered}
$$

Substituting $x=3$ in any of the functions $=2(3)+5=11$

Que:80

Let AD be perpendicular to BC , the largest side.
Area of triangle $\mathrm{ABC}=152$
$\Rightarrow \frac{1}{2}(38)(\mathrm{AD})=152$
$\Rightarrow A D=8$

> AS ABCD is right angled triangle, $\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
> $\Rightarrow 100=64+\mathrm{BD}^{2}$
> $\Rightarrow \mathrm{BD}=6$
> $\Rightarrow \mathrm{CD}=32$
> \Rightarrow Also $\triangle A D C$ is aright angled triangle.
> $\Rightarrow \mathrm{AC}^{2}=(32)^{2}+(8)^{2}$
> $\Rightarrow \mathrm{AC}=\sqrt{1088}=8 \sqrt{17}$

Que:81

Let the amounts with Anna, Ben and Clark be Rs. A, Rs. B and Rs. C respectively.
$a+b+c=100$
$4(a-13)=b+13$
$3(c-7)=b+7$
Solving these equations, we get $\mathrm{a}=$ Rs. $28, \mathrm{~b}=$ Rs. 47 , and $\mathrm{c}=$ Rs. 25
Let the sum that Ben need to give to Clark be Rs. X such that they have the same amount.
$47-X=25+X$ or, $X=11$.

Que:82			
	Model	Revenue from Sales	Revenue from Service
	Brio	6.4% of $20=1.28$	30.5% of $12=3.66$
	Jazz	10.15% of $20=2.03$	24% of $12=2.88$
	Civic	9% of $20=1.8$	18.2% of $12=2.184$
	City	18% of $20=3.6$	15% of $12=1.8$
	Accord	30% of $20=6$	6.1% of $12=0.732$
	CR-V	26.45% of $20=5.29$	6.2% of $12=0.7444$

Combined revenue, Rs. $6,732 \mathrm{Cr}$, is highest for Accord.

Que:83

Volume of cars sold of Brio $=\frac{6.4}{100} * \frac{20}{4}$
Of Jazz $=\frac{10.15}{100} * \frac{20}{5.8}$
Of Civic $=\frac{9}{100} * \frac{20}{7.2}$
Of City $=\frac{18}{100} * \frac{20}{12}$

Of Accord $=\frac{30}{100} * \frac{20}{20}$
Of CR-V $=\frac{26.45}{100} * \frac{20}{23}$
It can be seen that the least number of cars sold is of CR-V, which is equal to 23 .

Que:84

Say the no. of cars sold of the six brands is $6 \mathrm{k}_{1}, 7 \mathrm{k}_{1}, 5 \mathrm{k}_{1}, 6 \mathrm{k}_{1}, 6 \mathrm{k}_{1}, 5 \mathrm{k}_{1}$ respectively.
Say the no. of cars serviced of the six brands is $6 \mathrm{k}_{2}, 7 \mathrm{k}_{2}, 5 \mathrm{k}_{2}, 6 \mathrm{k}_{2}, 6 \mathrm{k}_{2}, 5 \mathrm{k}_{2}$ respectively.
Sum of revenue per car from sales and from service.
$=\frac{6.4 \%}{6 k_{1}}+\frac{30.5 \% \text { of } 12}{6 k_{2}}$
Revenue obtained per car of Jazz
$=\frac{10.15 \% \text { of } 20}{7 k_{1}}+\frac{24 \% \text { of } 12}{7 k_{2}}$
Similarly the expressions for other cars can be written. Unless some relation between k_{1} and k_{2} is known, the expressions cannot be determined.

\therefore It cannot be determined.

Que:85

Say 3 stations are chosen from the 38 intermediate stations between Gudivada and Yaddanapudi such that they are not consecutive. There are 35 remaining stations, which will have 36 gaps.
\Rightarrow The 3 stations should have been chosen from the 36 gaps.
$\Rightarrow \therefore$ No. of ways $={ }^{36} \mathrm{C}_{3}=7140$.

Que:86

If the root are real, then discriminate ≥ 0

$$
\begin{aligned}
& \Rightarrow \mathrm{p}^{2}-4 * 12 \geq 0 \\
& \Rightarrow \mathrm{p}^{2} \geq 48 \\
& \Rightarrow|p| \geq \sqrt{48} \\
& \Rightarrow|p| \geq 4 \sqrt{3}
\end{aligned}
$$

But p is the sum of the roots $\alpha_{1} \& \alpha_{2}$

$$
\Rightarrow\left|\alpha_{1}+\alpha_{2}\right| \geq 4 \sqrt{3}
$$

Que:87

The equation of the passing through $(3,5)$ and $(2,2)$ is $y-2=\frac{5-2}{3-2}(x-2)$ or $3 x-y=4$.

Now since the point $(a+1,3 a-1)$ satisfies the above equation i.e. $3(a+1)-(3 a-1)=4$. So any real value of ' a ' will satisfy the above equation.

Que:88
$\mathrm{f}(1+1)=\mathrm{f}(2)=\mathrm{f}(1) \mathrm{f}(1)=\mathrm{f}^{2}(1)=16^{2}$
$\mathrm{f}(3)=\mathrm{f}(2) \mathrm{f}(1)=16^{2} * 16=16^{3}$
$\mathrm{f}(4)=16^{4}$
$f(x)=16^{x}$.
$\therefore f\left(\frac{3}{4}\right)=16^{\frac{3}{4}}=8$
Que:89
Using statement 1 alone, the possible number of students in the class can be 19, 18, 17... To 5. So it is not sufficient alone

Using statement 2 alone, the possible number of students in the class are 13, 14, 15, ..Again not sufficient alone.

Even if we combine both, we get multiple values possible. Hence, no unique answer.

Que:90

Using Statement 1 alone, B \& C together earns $\$ 350$. Individual salary of them can't be unique and we can't conclude the highest value

Using statement 2 alone, A \& C earns $\$ 250$ combined. Now the highest has to be $250 \$$ which is drawn by B as A \& C both earns less than $250 \$$.

So, statement 2 alone is sufficient.

Que:91

Using statement 1 alone, the sixth men height is 5 feet, which alone is not sufficient to say anything about the height of 5th men in the queue (From front end of the line)

Using statement 2 alone,
Height of $6^{\text {th }}$ man $=4^{*}$ Height of $5^{\text {th }} \operatorname{man}-(1)$

Height of $7^{\text {th }}$ man $=8^{*}$ Height of 6th man - (2)
Even after solving both equations, we can get a absolute value as both equation give only relation and no absolute value,
Combining both statements, we can get a unique.

Que:92

Using statement 1 alone, the total area of the square can be derived. The shaded portion will be $1 / 4$ of the total area. Hence, alone 1 is sufficient.
Using statement 2 alone, the diagonal length is given. Diagonal of square is always square root of 2 times the length of square. We can hence derive the area and the shaded portion will be $1 / 4$ th of the total and a unique answer can be derived. Hence, alone 2 is also sufficient.

Que:93

Using statement 1 alone, $\mathrm{R}>\mathrm{Q}$. We can't say anything about $\mathrm{P}>\mathrm{Q}$. Hence, 1 alone is not sufficient.

Using statement 2 alone, $\mathrm{R}>\mathrm{P}$. Again we can't say anything about $\mathrm{P}>\mathrm{Q}$. Hence, statement 2 alone is not sufficient.
Combining both statements, $\mathrm{R}>\mathrm{P}$ and $\mathrm{R}>\mathrm{Q}$. But we cannot get a unique relationship between P and Q .
Both are not sufficient.

Que:94

Age of Thomas can be 8, 27 or 64 .
Using statement 1 alone, the only age possible is 27 . Hence, 1 alone is sufficient.
Using statement 2 alone, the only possible age is 64 . Hence, 2 alone is sufficient.

Que:95

Average number of applications received
$=\frac{\text { Total Number of applications received }}{4}$
The \% change in the average number if applications received per university is same as that for total number of applications. In 2007, total number of applications $=18926+16723+18428+$ $19201=73,276$.

In 2009, total number of applications received $=85701$. \% Increase $=85701-73728 / 73728 *$ $100=16.95 \%$.

Que:96

For University R, \% increase in applications from
2006 to $2007=\frac{184-157}{157} * 100=17 \%$
Similarly,
2007 to 2008 is 12%, 2008 to 2009 is 4% and 2009 to 2010 is 9%. Least $\%$ increase occurred in 2009.

Que:97

$41 \mathrm{n}=(40+1)^{\mathrm{n}}$. This means $\mathrm{x}=$ number of factors of 40 which is equal to 8 .

Que:98

Go by options, option 1 is eliminated as she cannot offer all the flowers.
Take option (4) Let flower be n. After putting into the water $=2 n .1 / 4^{\text {th }}$ of $2 n$ offered to the first place of worship $=2 n / 4$. Remaining $3 n / 2$. After putting $3 n / 2$ flower into water they become $3 n$ flowers, $1 / 4^{\text {th }}$ of $3 n$ offered to the second place of worship. Remaining $=9 n / 4$. Hence required ratio $=2 n / 4: 9 n / 4=2: 9$.

Que:99

p can be 3 or 7 , but unit digit of $(\mathrm{p}+1)^{2}=4$. $\mathrm{p}=7$. Hence unit digit of $(7+2)^{2}=1$.

Que:100

As the given equation has imaginary root, they will be conjugate to each other. In this case, both roots will be common or $\mathrm{a}: \mathrm{b}: \mathrm{c}=1: 2: 3$.

Que:101

$\mathrm{A}_{20}=1+3+5+\ldots 20$ terms $=20 / 2\left[2+19^{*} 2\right]=400$. So the first term of A_{21} is 401.

Que:102

In order to form a pair, the first female will ($\mathrm{n}-1$) trials, the second ($\mathrm{n}-2$) trials and so the total number $=n(n-1) / 2$.

Que:103

In the given progression, first term $=19$, common difference $=18.5-19=-4 / 5$. Since the common difference is negative, each successive term is decreasing and here will be negative terms. Let nth term be the first negative term. Then nth term $<0=>\mathrm{an}<0=\mathrm{a} 1+(\mathrm{n}-1) \mathrm{d}<0$. Solving for n we get $\mathrm{n}=25$.
Here, 25th term is the first negative tem and the first 24 terms will be non-negative. The sum will
be maximum if no negative terms are taken. So, summing up to the 24 terms will be considered. Maximum sum $=$ S24 $=24 / 2 *[2(19)+24-1)(-4 / 5)]=235.5$.

Que:104

The given term is constant and there cannot be minimum and maximum value of a constant term.

Que:105

For all values of n, we get $\mathrm{f}(\mathrm{n})=1 / \mathrm{n}$. So the required answer $=1+2+3+\ldots+9=45$.

Que:106

Using statement 1 alone, Since $\mathrm{m}-\mathrm{n}$ is a multiple of 22 , $\mathrm{m}-\mathrm{n}$ is multiple of 11 and $2(11 * 2=22)$.
If both m and n are multiples of 11 , then their sum is also multiple of 11 . However, if m and y are not individually divisible by 11 , it is possible that $\mathrm{m}-\mathrm{n}$ is a multiple of 22 while $\mathrm{m}+\mathrm{n}$ is not a multiple of 11 . Hence, alone 1 is not sufficient.

Using statement 2 alone, possible values are $11,22, \ldots, 99$. Since each of the values is a multiple of $11, m$ must be a multiple of 11 . Now if both m and n are multiples of $11,(m+n)$ and $(m-n)$ will be a multiple of 11 . Hence, statement 2 alone is sufficient.

Que:107
$\|2 \mathrm{x}-19\|<7$, implies that $-7<\|2 \mathrm{x}-19\|<7$, implies that $\mathrm{x}>13$ or $\mathrm{x}<13$. Hence statement 1
alone is not sufficient.
Statement 2 implies that $\mathrm{x}=0$ or $\mathrm{x}=4$. Hence, not sufficient. Even after combining both the
statements, unique solution cannot be obtained.

Que:108

Using statement 1 alone, $3 \mathrm{x}+5 \mathrm{y}=11$ can't derive unique relation between x and y (if $\mathrm{x}=2, \mathrm{y}=$ $1 \Rightarrow x>y \&$ if $x=(-2), y=7 \Rightarrow x<y$. Hence 1 alone is not sufficient.
The odd power of x is greater than the odd power of y. It implies that x is greater than y and hence sufficient.

Que:109

For any $\mathrm{n}, 199^{2 \mathrm{n}}$ has last digit as 1 . But the last digit of $144^{2 \mathrm{n}}$ is 4 for odd values of n and 6 for even values of n. Therefore, last digit of the expression is either 5 or 7 .

Que:110

Relative speed of A and B will be $20 \mathrm{~m} / \mathrm{min}$ to cover the track of 960 m . It will take 48 min .
Que:111

Let's assume the total amount of work $=32$ units.
So A and B does 2 units per day. A does 1 unit per day so B does 1 unit per day. Hence, 32 units of work will be completed in 32 days.

