SOLUTION				
Que:71				
Given that DE and FG are both parallel to B.				
\Rightarrow DE is parallel to FG.				
$\therefore \Delta ADE \sim \Delta AGF$				
Since the area of \triangle ADE is equal to the area of the quadrilateral DEGF, the area of				
Δ AFG is twice the area of the Δ ADE.				
$\frac{Area \ of \ \Delta \ ADE}{Area \ of \ \Delta \ AFG} = \left(\frac{AD}{AF}\right)^2 = \left(\frac{AE}{AG}\right)^2 = \left(\frac{DE}{FG}\right)^2$				
$\therefore \left(\frac{DE}{FG}\right)^2 = \frac{1}{2}$				
$\Rightarrow \frac{DE}{FG} = \frac{1}{\sqrt{2}}$				
Que:72				
Given equation $31x + 13y = 75$.				
(A) (2, 1) satisfies the given equation $31(2) + 13(1) = 75$.				
Any pair (x, y) satisfying the equation can be expressed in the form (2-13K, 31K+1) where k is				
an integer.				
: When K=1 $(2 - 13(1), 31+1) = (-11, 32)$				
When K=2 $(2 - 13(2), 31+2) = (-24, 63)$				
K=3(2-13(3), 31+3) = (-37, 94)				
\therefore Option (D) does not satisfy the given equation.				
Que:73				
It is sufficient to compare the ratio $\frac{20.7}{32.8}$ (i.e., mango) with the ratio $\frac{27.4}{6.9}$, $\frac{19.4}{11.8}$, $\frac{5.8}{14.3}$, $\frac{4.6}{6.1}$, $\frac{18.7}{24.7}$ and				
$\frac{3.4}{3.4}$				
By observation, only $\frac{5.8}{14.3}$ (i.e., Apples) is less than $\frac{20.7}{32.8}$. Hence only one variety of fruit.				
Que:74				
Export price per tonne for walnuts is proportional $\frac{27.4}{6.9}$ which is the highest ratio.				
Statement A	Statement A is true as Walnuts has the highest ratio of value to quality.			

Statement B is true as $\frac{20.7}{32.8} < \frac{18.7}{24.7}$. Statement C is true as $\frac{3.4\% \text{ of } x}{3.4\% \text{ of } y} = \frac{x}{y}$. Statement D is true as $\frac{19.4\%}{11.8\%} < 2 \left(\frac{3.4}{3.4}\right)$.

Que:75

Let the total production of all the fresh fruits be 100.

 \Rightarrow Exports of fresh fruits = 30

From the 1^{st} pie-chart, exports of mango = 32.8% of exports of all fresh fruits = 32.8% of 30 which is 20% of the production of mangoes.

 $\therefore 32.8\%$ of 30 = 20% P_M => P_M = $\frac{32.8*30}{20}$ = 49.2

Out of the total production of 100, share of mangoes = 49.2 or 49.2%.

Que:76

If the money is equal in dollars terms, then it will be so even in rupee terms. A Robert got 24 + 8

=32 rupees and now all of three have equal amount.

Total amount = 32*3 = 96 rupees

Total amount = (12D+5E) + (8D+4E) = 20D+9E

∴ 20D+9E=96

Also after giving 8 rupees to Robert, Nelson is left with 32 rupees.

$$\Rightarrow$$
 8D + 4E -8 =32

$$\Rightarrow 2D + E = 10 \rightarrow (2)$$

(2) * 10 - (1) gives E =4.

Que:77

Let Nelcy and Mike together can complete the work in n days.

 \Rightarrow Nelcy takes (n+12) days

⇒ Mike takes (n+27) days

$$\therefore \frac{1}{(n+12)} + \frac{1}{(n+27)} = \frac{1}{n}$$

⇒ n[(n+12) + (n+27)] = (n+12)(n+27)
⇒ 2n² + 39n = n² + 39n + (27)(12)
⇒ n² = (27)(12) = 324
⇒ n = 18

But Nelcy and Mike worked for only 15 days.

- \Rightarrow They completed $\frac{15}{18} = \frac{5}{6}$ th of the work.
- \Rightarrow James completed $\frac{1}{6}$ th of the work.
 - : James share $=\frac{1}{6}(3000) = \text{Rs. } 500$

Que:78

Observe that $(-1)^{2i} = 1$, for all values of i. Hence $OP_1 = OP_2 = OP_3 \dots = OP_n = 1$ unit.

Consider the section of polygon as shown.

Que:79

2x + 5 is an increasing function and 14 - x is a decreasing function.

Min [max (2x+5, 14 - x)] occurs when the increasing and decreasing functions become equal.

$$\therefore 2x + 5 = 14 - x$$

 \Rightarrow 3x = 9

$$\Rightarrow$$
 X = 3

Substituting x = 3 in any of the functions = 2(3) + 5 = 11

Que:80

Let AD be perpendicular to BC, the largest side.

Area of triangle ABC = 152

$$\Rightarrow \frac{1}{2}(38) (AD) = 152$$
$$\Rightarrow AD = 8$$

AS ABCD is right angled triangle, $AB^2 = AD^2 + BD^2$

 $\Rightarrow 100 = 64 + BD^2$

- \Rightarrow BD = 6
- \Rightarrow CD = 32
- \Rightarrow Also \triangle *ADC* is aright angled triangle.

$$\Rightarrow AC^2 = (32)^2 + (8)^2$$

 \Rightarrow AC = $\sqrt{1088} = 8\sqrt{17}$

Que:81

Let the amounts with Anna, Ben and Clark be Rs. A, Rs. B and Rs. C respectively.

a + b + c = 100

4(a-13) = b+13

3(c-7) = b+7

Solving these equations, we get a = Rs. 28, b = Rs. 47, and c = Rs. 25

Let the sum that Ben need to give to Clark be Rs. X such that they have the same amount.

47-X = 25+X or, X=11.

Que:82

Mo	odel	Revenue from Sales	Revenue from Service
В	rio	6.4% of 20 = 1.28	30.5% of 12 = 3.66
Ja	AZZ	10.15% of 20 = 2.03	24% of 12 = 2.88
Ci	vic	9% of 20 = 1.8	18.2% of 12 = 2.184
C	ity	18% of 20 = 3.6	15% of 12 = 1.8
Ace	cord	30% of 20 = 6	6.1% of 12 = 0.732
CI	R-V	26.45% of 20 = 5.29	6.2% of 12 = 0.7444

Combined revenue, Rs. 6,732 Cr, is highest for Accord.

Que:83

Volume of cars sold of Brio = $\frac{6.4}{100} * \frac{20}{4}$ Of Jazz = $\frac{10.15}{100} * \frac{20}{5.8}$ Of Civic = $\frac{9}{100} * \frac{20}{7.2}$ Of City = $\frac{18}{100} * \frac{20}{12}$ Of Accord = $\frac{30}{100} * \frac{20}{20}$ Of CR-V = $\frac{26.45}{100} * \frac{20}{23}$

It can be seen that the least number of cars sold is of CR-V, which is equal to 23.

Que:84

Say the no. of cars sold of the six brands is $6k_1$, $7k_1$, $5k_1$, $6k_1$, $6k_1$, $5k_1$ respectively.

Say the no. of cars serviced of the six brands is $6k_2$, $7k_2$, $5k_2$, $6k_2$, $6k_2$, $6k_2$, $5k_2$ respectively.

Sum of revenue per car from sales and from service.

$$= \frac{6.4\%}{6k_1} + \frac{30.5\% \ of \ 12}{6k_2}$$

Revenue obtained per car of Jazz

$$= \frac{10.15\% \, of \, 20}{7k_1} + \frac{24\% \, of \, 12}{7k_2}$$

Similarly the expressions for other cars can be written. Unless some relation between k_1 and k_2 is known, the expressions cannot be determined.

 \therefore It cannot be determined.

Que:85

Say 3 stations are chosen from the 38 intermediate stations between Gudivada and Yaddanapudi

such that they are not consecutive. There are 35 remaining stations, which will have 36 gaps.

 \Rightarrow The 3 stations should have been chosen from the 36 gaps.

 \Rightarrow : No. of ways = ${}^{36}C_3 = 7140$.

Que:86

If the root are real, then discriminate ≥ 0

$$\Rightarrow p^2 - 4 * 12 \ge 0$$
$$\Rightarrow p^2 > 49$$

$$\Rightarrow |p| \ge \sqrt{48}$$

$$\Rightarrow |p| \ge 4\sqrt{3}$$

But p is the sum of the roots $\propto_1 \& \propto_2$

$$\Rightarrow |\alpha_1 + \alpha_2| \ge 4\sqrt{3}$$

Que:87

The equation of the passing through (3,5) and (2,2) is $y - 2 = \frac{5-2}{3-2}(x-2)$ or 3x - y = 4.

Now since the point (a+1, 3a - 1) satisfies the above equation i.e. 3(a + 1) - (3a - 1) = 4. So any real value of 'a' will satisfy the above equation.

Que:88

Que:89

Using statement 1 alone, the possible number of students in the class can be 19, 18, 17... To 5. So it is not sufficient alone

Using statement 2 alone, the possible number of students in the class are 13, 14, 15,...Again not sufficient alone.

Even if we combine both, we get multiple values possible. Hence, no unique answer.

Que:90

Using Statement 1 alone, B & C together earns \$350. Individual salary of them can't be unique and we can't conclude the highest value

Using statement 2 alone, A & C earns \$250 combined. Now the highest has to be 250\$ which is drawn by B as A & C both earns less than 250\$.

So, statement 2 alone is sufficient.

Que:91

Using statement 1 alone, the sixth men height is 5 feet, which alone is not sufficient to say anything about the height of 5th men in the queue (From front end of the line)

Using statement 2 alone,

Height of 6^{th} man = 4* Height of 5^{th} man — (1)

Height of 7^{th} man = 8* Height of 6th man — (2)

Even after solving both equations, we can get a absolute value as both equation give only relation and no absolute value.

Combining both statements, we can get a unique.

Que:92

Using statement 1 alone, the total area of the square can be derived. The shaded portion will be ¹/₄ of the total area. Hence, alone 1 is sufficient.

Using statement 2 alone, the diagonal length is given. Diagonal of square is always square root of 2 times the length of square. We can hence derive the area and the shaded portion will be 1/4th of the total and a unique answer can be derived. Hence, alone 2 is also sufficient.

Que:93

Using statement 1 alone, R>Q. We can't say anything about P>Q. Hence, 1 alone is not sufficient.

Using statement 2 alone, R>P. Again we can't say anything about P>Q. Hence, statement 2 alone is not sufficient.

Combining both statements, R > P and R > Q. But we cannot get a unique relationship between P and Q.

Both are not sufficient.

Que:94

Age of Thomas can be 8, 27 or 64.

Using statement 1 alone, the only age possible is 27. Hence, 1 alone is sufficient.

Using statement 2 alone, the only possible age is 64. Hence, 2 alone is sufficient.

Que:95

Average number of applications received

_ Total Number of applications received

The % change in the average number if applications received per university is same as that for total number of applications. In 2007, total number of applications = 18926 + 16723 + 18428 + 19201 = 73, 276.

In 2009, total number of applications received = 85701. % Increase = 85701-73728 / 73728 * 100= 16.95%.

Que:96

For University R, % increase in applications from

2006 to $2007 = \frac{184 - 157}{157} * 100 = 17\%$

Similarly,

2007 to 2008 is 12%, 2008 to 2009 is 4% and 2009 to 2010 is 9%. Least % increase occurred in 2009.

Que:97

 $41n = (40 + 1)^n$. This means x = number of factors of 40 which is equal to 8.

Que:98

Go by options, option 1 is eliminated as she cannot offer all the flowers.

Take option (4) Let flower be n. After putting into the water = 2n. $1/4^{th}$ of 2n offered to the first place of worship = 2n/4. Remaining 3n/2. After putting 3n/2 flower into water they become 3n flowers, $1/4^{th}$ of 3n offered to the second place of worship. Remaining = 9n/4. Hence required ratio= 2n/4: 9n/4 = 2: 9.

Que:99

p can be 3 or 7, but unit digit of $(p + 1)^2 = 4$. p = 7. Hence unit digit of $(7 + 2)^2 = 1$.

Que:100

As the given equation has imaginary root, they will be conjugate to each other. In this case, both roots will be common or a: b: c = 1: 2: 3.

Que:101

 $A_{20}=1+3+5+...20$ terms = 20/2 [2 + 19*2] = 400. So the first term of A_{21} is 401.

Que:102

In order to form a pair, the first female will (n - 1) trials, the second (n-2) trials and so the total number = n (n-1)/2.

Que:103

In the given progression, first term = 19, common difference = 18.5 - 19 = -4/5. Since the common difference is negative, each successive term is decreasing and here will be negative terms. Let nth term be the first negative term. Then nth term < 0 =>an<0 = a1 + (n-1) d<0. Solving for n we get n=25.

Here, 25th term is the first negative tem and the first 24 terms will be non-negative. The sum will

be maximum if no negative terms are taken. So, summing up to the 24 terms will be considered. Maximum sum = S24 = 24/2 * [2(19) + 24 - 1) (-4/5)] = 235.5.

Que:104

The given term is constant and there cannot be minimum and maximum value of a constant term.

Que:105

For all values of n, we get f (n)= 1/n. So the required answer = 1 + 2 + 3 + ... + 9 = 45.

Que:106

Using statement 1 alone, Since m- n is a multiple of 22, m-n is multiple of 11 and 2 (11*2=22). If both m and n are multiples of 11, then their sum is also multiple of 11. However, if m and y are not individually divisible by 11, it is possible that m –n is a multiple of 22 while m + n is not a multiple of 11. Hence, alone 1 is not sufficient.

Using statement 2 alone, possible values are 11, 22,...,99. Since each of the values is a multiple of 11, m must be a multiple of 11. Now if both m and n are multiples of 11, (m + n) and (m - n) will be a multiple of 11. Hence, statement 2 alone is sufficient.

Que:107

|2x - 19| < 7, implies that -7 < |2x - 19| < 7, implies that x > 13 or x < 13. Hence statement 1 alone is not sufficient.

Statement 2 implies that x=0 or x=4. Hence, not sufficient. Even after combining both the statements, unique solution cannot be obtained.

Que:108

Using statement 1 alone, 3x + 5y = 11 can't derive unique relation between x and y (if x = 2, y = 1 = > x > y & if x = (-2), y = 7 = > x < y. Hence 1 alone is not sufficient.

The odd power of x is greater than the odd power of y. It implies that x is greater than y and hence sufficient.

Que:109

For any n, 199^{2n} has last digit as 1. But the last digit of 144^{2n} is 4 for odd values of n and 6 for even values of n. Therefore, last digit of the expression is either 5 or 7.

Que:110

Relative speed of A and B will be 20 m/min to cover the track of 960m. It will take 48 min.

Que:111

Let's assume the total amount of work = 32 units.

So A and B does 2 units per day. A does 1 unit per day so B does 1 unit per day. Hence, 32 units of work will be completed in 32 days.