Que:1	The ı	The unit digit of $(1^4 + 2^4 + 3^4 + + 130^4) - (1! + 2! + 3! + + 120!)$ is					
	(A)	(A) 0					
	(B)	2					
	(C)	6					
	(D)	9					
	(E)	1					
Que:2	The c	The question given below is followed by two statements, A and B. Mark the answer using the					
	follov	following instructions:					
	Marl	\mathbf{x} (a) if the question can be answered by using the First statement alone					
	Marl	\mathbf{x} (b) if the question can be answered by using the Second statement alone					
	Marl	\mathbf{x} (c) if the question can be answered by using either statement alone					
	Marl	\mathbf{x} (d) if the question can be answered by using both the statements together, but cannot be					
	answ	ered by using either statement alone.					
	Marl	\mathbf{x} (e) if the question cannot be answered even by using both the statements together.					
	At w	hat price (in \$) did peter, bought the laptop?					
	1. Pe	1. Peter sold the laptop at 15% profit.					
	2. H	ad he bought it at 10% less & sold it for \$21 less, he would have gained 25%.					
Que:3	Mr d	Mr & Mrs Thomas have 2 sons and 3 daughters. Each son is planning to have three					
	daug	daughters and each daughter is planning to have 2 sons. What is the probability that they					
	will f	will fulfil their wish?					
	(A)	(A) $\frac{1}{2}$					
		4					
	(B)	$2C_1\left(\frac{1}{2}\right)^3$					
	(C)	$3C_1\left(\frac{1}{2}\right)^5$					
		1					
	(D)	512					
		1					
	(E)	64					
Que:4	Find	Find the sum of the series 2+ 12 + 36 + 80 + for 50 terms.					
	(A)	25125					
	(B)	55055					
	(C)	25725					
	(D)	55725					
	(E)	None of these					
Que:5	The o	question given below is followed by two statements, A and B. Mark the answer using the					
	following instructions:						

	Mark (a) if the question can be answered by using the First statement alone			
	Mark (b) if the question can be answered by using the Second statement alone			
	Mark (c) if the question can be answered by using either statement alone			
	Mark (d) if the question can be answered by using both the statements together, but cann			
	answered by using either statement alone.			
	Mark (e) if the question cannot be answered even by using both the statements together.			
	The sum of the first five terms of a geometric progression is 363. What is the first term of th			
	Geometric progression?			
	1 . All the terms are distinct natural numbers as well as multiples of 3 .			
	2 . On	e of the terms is cube of a natural number.		
Que:6	The o	question given below is followed by two statements, A and B. Mark the answer using the		
	follov	wing instructions:		
	Marl	\mathbf{x} (a) if the question can be answered by using the First statement alone		
	Marl	x (b) if the question can be answered by using the Second statement alone		
	Mark (c) if the question can be answered by using either statement alone			
	Mark (d) if the question can be answered by using both the statements together, but cannot be			
	answered by using either statement alone.			
	Mark (e) if the question cannot be answered even by using both the statements together.			
	In a test, three students a, b and c scored combined 214 marks. Student B scored the least.			
	Did A score the highest marks out of three?			
	1. A Scored 68 marks			
	2. B Scored 68 marks			
Que:7	If $ 2X - 5 \le 9$ and $ 4Y - 7 \le 21$, then the maximum value of $ X - Y $?			
	(A)	14		
	(B)	7		
	(C)	21		
	(D)	28		
	(E)	0		
Que:8	The d	question given below is followed by two statements, A and B. Mark the answer using the		
	follov	wing instructions:		
	Marl	\mathbf{x} (a) if the question can be answered by using the First statement alone		
	Marl	x (b) if the question can be answered by using the Second statement alone		
	Marl	\mathbf{x} (c) if the question can be answered by using either statement alone		
	Marl	x (d) if the question can be answered by using both the statements together, but cannot be		
	answ	ered by using either statement alone.		
	Marl	\mathbf{x} (e) if the question cannot be answered even by using both the statements together.		
	Robert have distinct numbers of cars and cycles, both prime and less than 20. In all Robert			

	owns how many cars and cycles?1. Their sum is a prime number.					
	 Their sum is a prime number. The sum of their squares is a perfect cube. 					
	2. The sum of their squares is a perfect cube.					
Que:9	In a	class consisting of 15 students, the mathematics teacher writes a natural number on the				
· · · ·	board and asks the class to tell something about the number. Peter, one of the students, says,					
	"Thi	s number is a multiple of 1". Thomas, the second student, says. "This number is a				
	mult	iple of 2." This goes on till the 15th student. The teacher notices that all but two of them				
	were	correct in their statements and both of them spoke one after the other consecutively.				
	Out o	of 15, which two were not correct?				
	(A)	7 th and 8 th				
	(B)	8 th and 9 th				
	(C)	13 th and 14 th				
	(D)	6 th and 7 th				
	(E)	9 th and 10 th				
Que:10	Find	the number of multiples of 6 that are the values of x or y, for the equation $4X - 3Y = 1$.				
	(X ar	nd Y both are Natural numbers and less than 1000.)				
	(A)	523				
	(B)	1				
	(C)	0				
	(D) 524					
	(E)	None				
Que:11	If a is	s a non-negative real number, simplify the following expression.				
		$\begin{pmatrix} a & 1 \end{pmatrix} \begin{pmatrix} a^3 \end{pmatrix}$				
		$\log \left a^{3} + \frac{1}{a^{3}} + 7 \right + \log \left \frac{a}{a^{6} + 7a^{3} + 1} \right $				
	a^3 +	$-\frac{1}{2}+7+\frac{(a)}{(a)}$				
		$a^{3} = \log(a^{3} + \frac{1}{2} + 7) + \log(a^{3})$				
		$a = 1$ $a = 10g \left(\frac{a}{a^3} + 7 \right) + 10g \left(\frac{a^6}{a^6} + 7a^3 + 1 \right)$				
		$a^{3} + \frac{1}{a^{3}} + \frac{1}{a$				
		$a^{3} - \frac{1}{3} + 7 + \log \left a^{3} + \frac{1}{3} + 7 \right + \log \left \frac{a}{6 + 7 - 3 + 1} \right $				
		a° (a°) ($a^{\circ} + /a^{\circ} + 1$)				
		1				
	(A)	$a^{3} + \frac{1}{2} + 7 + 3 \log a$				
	(11)	a^{3}				
	(B)	$a^{3} + \frac{1}{3} + 7$				
		a				
	(C)	1				
	(D)	0				

	(E)	10				
Que:12	In a race of 5 km, Adam beats Thomas by 30 seconds and Thomas beats Robert by 70					
	secon	seconds. If the speed of Adam is 30kmph, by what distance did Thomas beat Robert?				
	(A) 500m					
	(B)	600m				
	(C)	700m				
	(D)	750m				
	(E)	900m				
Que:13	An A	An Arabian king celebrated his y^{th} birthday in the year $2y^2$. In which year did he ascend to				
	the tl	nrone if he was 17 years at that time?				
	(A)	1720				
	(B)	1953				
	(C)	1670				
	(D)	2013				
	(E)	(E) None of These				
Que:14	Find	the last three digits of the expression $23 * 24 * 25 * 31 * 32$.				
	(A)	8,0,0				
	(B)	6,0,0				
	(C)	4,0,0				
	(D)	2,0,0				
	(E)	0,0,0				
Que:15	(X) is	s an odd function and g(X) is an even then what would be g (f(X))?				
	(A)	Even				
	(B)	Odd				
	(C)	Neither odd nor even				
	(D)	None of above				
	(E)	Can't be determine				
Que:16	The s	The solution set of the equation $(X!)^2 - X! - 30 \ge 0$ will be				
	(A)	$X \ge 6$				
	(B)	$0 \le x \le 6$				
	(C)	$0 \le x \le 3$				
	(D)	$X \ge 3$				
	(E)	None of these				
Que:17	A squ	are is inscribed in a circle. If p ₁ , is the probability that a randomly chosen point of the				
	squa	square lies within the circle and p_2 , the probability that the point lies outside the square then				
	(A)	$p_{1=} p_2$				

	(B)	n n		
	(D)			
		P1< P2		
	(D)	P _{1*} P ₂₌₀		
	(E) None			
Que:18	In a class of 74 students, the number of students who play cricket is twice the number of			
	students, who play hockey, which, in turn, is twice the number of students who play both the			
	game	s. What is the maximum possible number of students who play only cricket?		
	(A)	52		
	(B)	48		
	(C)	42		
	(D)	40		
	(E)	36		
Que:19	Whic	h of the following values is the highest?		
	(A)	$\sqrt{3} + \sqrt{10}$		
	(B)	$\sqrt{5} + \sqrt{8}$		
	(C)	$\sqrt{6} + \sqrt{7}$		
	(D)	$\sqrt{4} + \sqrt{9}$		
	(E)	3.14		
Que:20	The angle of elevation of a pole was observed to be 45° from two points B and D on the			
	ground. If the foot of the pole is A, and $\angle ABD = 45^{\circ}$ and the distance BD=25m, then find			
	the height of the pole.			
	(A)	25m		
	(B)	$\frac{25}{\sqrt{2}}m$		
	(C)	$\frac{25\sqrt{3}}{\sqrt{2}}m$		
	(D)	$\frac{25}{\sqrt{3}}m$		
	(E)	37.5m		
Que:21	A cir	cle is inscribed in an equilateral triangle and a square is inscribed in the circle. Find the		
	ratio	of the area of the triangle to the square?		
	(A)	√3		
	(B)	3:2		
	(C)	3 √3 :2		

	(D)	$3\sqrt{3}: 2\sqrt{2}$		
	(E) None			
Que:22	Mark (a) if the question can be answered by using the First statement alone			
	Mark (b) if the question can be answered by using the Second statement alone			
	Marl	\mathbf{x} (c) if the question can be answered by using either statement alone		
	Marl	\mathbf{x} (d) if the question can be answered by using both the statements together, but cannot be		
	answ	ered by using either statement alone.		
	Marl	\mathbf{x} (e) if the question cannot be answered even by using both the statements together.		
	PQR	S is a cyclic quadrilateral and RS=8 cm. Find the area of PQRS.		
	I. C	me of the angles P, Q, R and S is 90°.		
	II. R	S and QR are equidistant from the centre of the circle circumscribing PQRS.		
Que:23	A cu	be is taken and all its six faces are painted. Then, the cube is cut by six planes, so as to		
	yield	the maximum number of smaller cubes. If 3.5 litres of paint was consumed to paint the		
	origi	nal cube, find the additional amount of paint needed to paint all the unpainted faces of		
	all th	e smaller cubes.		
	(A)	3.5 litres		
	(B)	11.5 litres		
	(C)	7 litres		
	(D)	10 litres		
	(E)	12 litres		
Que:24	The 1	top speed of a rail engine is 80km/hr. When pulling a train of wagons, its top speed is		
	redu	ced by a quality proportional to the square-root of the number of wagons. When the		
	number of wagons attached to the engine is 25, its top speed is 55 km/hr. If the top speed			
	must	be more than 20km/hr, what is the maximum number of wagons that can be attached		
	to the engine?			
	(A)	120		
	(B)	143		
	(C)	121		
	(D)	144		
	(E)	136		
Que:25	A cei	tain number of bacterial cells are placed in a petri dish and every hour exactly k% of		
	the b	acteria that are present at the beginning of the hour perishes. If it was noted that the		
	number of bacteria that perished in the first two hours is the same as the number of all the			
	were	ala mat perisheu alter the mist two nours, then what percentage of the initial Dacteria		
	(A)	26.24%		
	(A) (B)	20.27%		
	(D)	27.3170		

	(C)	42 10%			
	(C) (D)	(D) 35.36%			
	(E)	(E) 50.00%			
Ουρ.26	A cylindrical black of wood of radius 14 cm and height 20 cm is cut into four identical piece				
Que.20	A cymunical block of wood of radius 14 cm and neight 20 cm, is cut into four identical pieces				
	glued hack together in their original configuration, then what is the total surface area of this				
	new block wood?				
	(A)	(A) 3728 sg cm			
	(B)	2704 sq.cm			
	(C)	3608 sq.cm			
	(D)	2804 sq.cm			
	(E)	2723 sq.cm.			
Que:27	One	root of the quadratic equation $ax^2+bx+c=0$ is 2 and one root of the quadratic equation	1		
	cx ² +t	$ax+a=0$ is $-\frac{1}{3}$. What is sum of the roots of the first equation?			
	(A)	-1			
	(B)	-2			
	(C)	-3			
	(D)	5			
		3			
	(E)	None of these			
	Direc	ctions for Que:28 - Que:30			
		Proportion (in %) of sales volume of laptops out of the total sales volume of PCs in each of nine countries in 2004			
		India 5%			
		Indonesia 9%			
		Philippines 12%			
		China 16%			
		Korea 20%			
		Taiwan 24%			
		Australia 28%			
		Hongkong 46%			
		Singapore 47%			
	Tota	I Sales Volume of PCs in a Country = Sales volume of Laptops + Sales volume of	•		
	Desk	tops.			
Que:28	If in	2004, average price of a laptop in India is Rs. 45,000 and that of a desktop in India is	;		
	Rs. 25,000, what is the value of the total PC market in India given that 28,000 la				

	sold in India during that year?			
	(A) Rs. 2520 Crore			
	(B)	Rs. 1456 Crore		
	(C)	Rs. 1330 Crore		
	(D)	Rs. 72.8 Crore		
	(E)	None of these		
Que:29	If in 2004, the total PC sales volumes in China and Australia are in the ratio of 3:1 and the			
	prices of desktops in the two countries are in the ratio 2:3, what is the ratio of the sales			
	values of desktops in China and Australia?			
	(A)	7:2		
	(B)	5:2		
	(C)	7:3		
	(D)	6:7		
	(E)	None of these		
Que:30	A ma	nufacture reduced the cost of production of an item by 20%, but left the selling price		
	uncha	anged, as a result of which his profit (as a percentage of the cost of production)		
	increased by 30 percentage points. What will be his profit percentage, if he reduces the co			
	of production by a further 25%?			
	(A)	120%		
	(B)	100%		
	(C)	75%		
	(D)	200%		
	(E)	90%		

Scroll down for answers...

8

ANSWER KEY				
Que:1	С	Que:17	В	
Que:2	D	Que:18	С	
Que:3	D	Que:19	С	
Que:4	Ε	Que:20	В	
Que:5	Ε	Que:21	С	
Que:6	Α	Que:22	Ε	
Que:7	В	Que:23	С	
Que:8	В	Que:24	В	
Que:9	В	Que:25	D	
Que:10	С	Que:26	D	
Que:11	В	Que:27	Α	
Que:12	Α	Que:28	В	
Que:13	С	Que:29	С	
Que:14	Ε	Que:30	В	
Que:15	Α			
Que:16	D			